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Ostwald ripening in a semi-infinite system
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The Ostwald ripening of droplets in a supersaturated vapor is analyzed in a semi-infinite system bounded by
an unwetted wall. Whereas in an unbounded system only the growth of the droplet radius is taken into account,
the distance of the droplet from the wall enters as a second dynamic variable in a semi-infinite system. In the
space of these two variables the ripening process is described by a set of trajectories that display a depletion
layer of about three critical radii in thickness above the boundary wall. The asymptotic droplet-number distri-
bution is also calculated as a function of the two varial84063-651X%98)10503-3
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The dynamics of phase separation in bulk systems is &éimes the charge of the conductor. Since this charge is given
well-studied subjecf1,2]. Recently, interest has shifted to by the capacityC times the potential difference to infinity,
the influence of walls on, e.g., nucleati®+5] and spinodal we conclude that
decomposition6—11] where mainly the early stages have .
been considered. In the present work the late-stage growth of V(a)=4wDC(a,z)[c.—Cs(a)]. 2
nucleation-induced Ostwald ripening in a semi-infinite sys-
tem is discussed. Ostwald ripening is the process of phastogether with Eq(1) this shows thaa=2Acy/(C..—Cp) is
separation in a supersaturated binary mixture by diffusionathe critical radius of the droplet. The normal derivative of the
growth of supercritical nuclei of the minority phase. In a concentration field at the boundary wall of the system van-
fluid system at low initial supersaturation spherical dropletgshes because there is no diffusion flux into the wall. This
will typically be nucleated at large mutual separation so thafNeumann boundary condition is implicitly fulfilled, if the
the diffusional droplet growth can be described in a singlesmethod of mirror charges is used with the wall taken as the
droplet picture. In the Lifshitz-Slyozov-WagnefLSW) reflection surface. In this way the growth properties of a
theory of Ostwald ripenin§i12—14 in an infinite system the droplet are described by the electrostatics of a capacitor con-
droplet growth is coupled to the concentration field to obeysisting of two spheres with a spacing ot Between their
global mass conservation. The main results of this theory areenters. The capacity of one of these spher¢45
the overall growth rate of the minority phase and, moreover,

the droplet number density distribution at the late stage, L - . 1
which turns out to be independent of the details of the initial C(a,z)=a Slnf(,u)szl (—=1)5"sinh(su) ™4,
nucleation process.

In the following we consider a semi-infinite system with a z/la=coshu). 3

dry boundary wall. Extending the standard LSW theory for
an infinite system, the distaneeof the droplet center from C converges to the bulk valu=a for (z/a)—« and de-
the wall will be taken as a second dynamic quantity in addi-creases monotonically forz{a) —1 because of the reduced
tion to the droplet radiug.. Under the assumption of slow diffusion flux screened by the wall. Also, the presence of the
diffusion, the concentration field surrounding a sphericawall gives rise to an anisotropy of the diffusion-flux density
droplet becomes quasistationary so that the correspondirgjong the surface of the growing droplet. Assuming that the
diffusion equation reduces to the Laplace equation. The corhydrodynamic relaxation of the droplet shape is fast com-
centration along the droplet surfacgis determined by the pared to the diffusional growth, the droplet remains spherical
Gibbs-Thomson relation but has an effective drift perpendicular to the wall due to the
above-mentioned screening effect. The drift is calculated by
integration of the diffusion-flux density times the distance

2 from the droplet center of mass along the droplet surface
cs(a)=Co 1+A5 ' @) divided by its mass. This leads to
. sinh() sinh(su)
wherec, is the concentration above a planar condensate and=3 D(C.—cs(a)) Szl (= DSHW,

A is a capillary length. In order to solve this diffusion prob- (4)

lem, we use an electrostatic analogy where the droplet is

replaced by a conducting sphere. Then the concentratioghere the expression for the diffusion-flux density has been
field, multlplled with the diffusion constam, resembles the adopted from the result for the Charge density of a Capacitor
electric field surrounding the sphere, also with Dirichlet[15]. The z drift vanishes far away from the walls in an
boundary conditions. The volume growth ratef the drop-  infinite system but increases when the distance to the wall is
let (i.e., the total flux into the dropletcorresponds to 4  diminished.
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FIG. 2. Trajectories, (u)/z. The thick long-dashed line marks
the droplet in contact with the wallgE=1).

FIG. 1. Trajectoriegy™(u).

A dry wall in contact with a supersaturated system turns
out to be stable if the droplets nucleated on the wall ar
spherical caps with contact anglés 7/2 [16]. The growth
rate for the curvature radius of such a droplet can also b
calculated using the electrostatic analogy. In this case th
mirror image of the droplet is a symmetric bispherical lens.?

The resulta is identical to that of a spherical droplet in the 1 v du
e(r,u)=Ae 7 (u)e p“’

ystem discussed in the LSW the¢@2—14. A well-known
result of this theory is that the sourcegat’=0,u=3/2 leads
Eo a steady state droplet-size distributigiir,u), which is
@sensitive to the initial conditions. Far<3/2 the function
(7,u) has the form

bulk except for a constant prefactkfd) with k(6)<<1 for
0> w/2[16,17]. Therefore the radii of supercritical nuclei on

ov(u)

the wall get surpassed by the critical radius, which is driven -1

by the faster growth of the droplets in the volufi®]. Con- 4. U2 ex;{

sequently, the droplets on the wall shrink so that the wall :Ae—’rﬁ 1-2uf3 ®)
eventually becomes dry. 2563(u+3)"3(3/2—u)H3

For the discussion of an ensemble of droplets in the bulk
the single droplet growth rates will be written in dimension-with v (u)=du/dr and it vanishes fou>3/2.
less units following the procedure of Lifshitz and Slyozov In Fig. 1 one can distinguish three regions of different
[12,13. In terms of the dimensionless variables  physical behavior. In the left corner below the dotted line no
=alac(t), g=2z/a, 7=3In[a(t)/a.(0)], C(g)=C(a,z)/a, trajectories are shown because the corresponding droplets on
and Z(g)=a z/(D[c.—c(a)]), Egs.(2) and(4) become these trajectories would come out of the wall, which makes
no sense. The region above the dotted and below the dashed

du® 3 line (including the trajectories running into the wall at
ar y(u=1)C(g)—u ) >1) is fed from the volumed 1—0) with infinite initial
values of the radiu. Also, for radiiu larger than 3/2 there
and exist no droplets in the bulk. As a consequence no droplets

do exist in the whole region which according to Fig. 2 cor-
dg 1 ., responds to a layer of a thickness of about three critical radii
a4, 3y tmu)[2(9)—9c(9)] (6)  at the wall. This means that in the late stage of the ripening

process a depletion layer will grow at a ratg. The
with y=(6DAco)/[daS(t)]. The value ofy describes the dashed line in Fig. 1 represents the boundary trajectory be-

- . - _1_ _ -
time dependence of the critical radius or the supersaturatior?nging to the fixed point ¢ "=0u=3/2). Above this
respectively. Since in the thermodynamic limit the latter isboundary the flow along the trajectories can be characterized

dominated by the bulk, the value of can be adopted from by the source strength of the fixed point, which is implicit in

the LSW theory[12-14 as y=27/4, which impliesa,,
w13

A differential equation for the trajectory(u) for the late-
stage growth of droplets follows from the ratio (&) and(6), X

dg_ y(u=-DI2(9)—9cQ)] _
du  yu2-u)c(g)—u*

F(u,9). (7)

Numerical integration produces Figs. 1 and 2, where all tra-

jectories run from the right to the lefte., u<0). The upper
line (g~*=0) of Fig. 1 represents the bulk behavior of the  FIG. 3. Droplet-number distribution in the semi-infinite system.
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Eq. (8). Integration of the continuity equation along the tra- represents the boundary trajectory of the fixed point. The

jectories leads to the droplet-number distribution,

u,z)=AeT——
e(7,u,2) S (W)

3/2 JF(u’,
xex;{f du’(J

u a9
U’,Q(U',“))

Jslzd ’ 1 1
1 v (W) pg (u)

u 1
+jodu vgl(U’)]' (9

u’,g(u’,g9;)
JF(u’,g9)
J9

curve in they-u plane ata;/z=0 displays the usual bulk
distribution (8). Generally, Fig. 3 shows a smooth decrease
in the droplet-number density from the bulk to the boundary
trajectory of the fixed point.

In conclusion we offer a qualitative interpretation of the
main results of the present paper. In a semi-infinite system
with a dry boundary wall the droplets close to this wall grow
slower than the droplets that are far away because the wall
screens the diffusional flux into the droplet. In the thermo-
dynamic limit the droplets far away from the wall reduce the
supersaturation and drive the critical radius faster than the
radius of a droplet close to the wall. A supercritical droplet
that grows in the bulk approaches the wall in units gof
because of its increasing radius, which leads to an impair-
ment of its growth properties. The former supercritical drop-
let gets surpassed by the critical radius, becomes subcritical
and vanishes before it can reach the wall. This is the mecha-
nism that leads to the building up of the growing depletion
zone close to the wall. Of course it would be interesting to

Here g(u,g;) are the trajectories parametrized by theirS€e this effect in an experiment.

minimag;=g(u=1) andvgl(u) means the velocitgu/dr
on the trajectoryg, at the radiusu. The expressiort9) has
been evaluated numerically and the result fp(u,z)
=A"le"p(7,u,2) is plotted in Fig. 3. Again the dashed line
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