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Ostwald ripening in a semi-infinite system
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Institut für Theoretische Physik IV, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstrasse 1, D-40225 Du¨sseldorf, Germany

~Received 12 September 1997!

The Ostwald ripening of droplets in a supersaturated vapor is analyzed in a semi-infinite system bounded by
an unwetted wall. Whereas in an unbounded system only the growth of the droplet radius is taken into account,
the distance of the droplet from the wall enters as a second dynamic variable in a semi-infinite system. In the
space of these two variables the ripening process is described by a set of trajectories that display a depletion
layer of about three critical radii in thickness above the boundary wall. The asymptotic droplet-number distri-
bution is also calculated as a function of the two variables.@S1063-651X~98!10503-2#

PACS number~s!: 64.60.Qb, 64.60.My, 64.75.1g
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The dynamics of phase separation in bulk systems
well-studied subject@1,2#. Recently, interest has shifted t
the influence of walls on, e.g., nucleation@3–5# and spinodal
decomposition@6–11# where mainly the early stages hav
been considered. In the present work the late-stage grow
nucleation-induced Ostwald ripening in a semi-infinite s
tem is discussed. Ostwald ripening is the process of ph
separation in a supersaturated binary mixture by diffusio
growth of supercritical nuclei of the minority phase. In
fluid system at low initial supersaturation spherical dropl
will typically be nucleated at large mutual separation so t
the diffusional droplet growth can be described in a sing
droplet picture. In the Lifshitz-Slyozov-Wagner~LSW!
theory of Ostwald ripening@12–14# in an infinite system the
droplet growth is coupled to the concentration field to ob
global mass conservation. The main results of this theory
the overall growth rate of the minority phase and, moreov
the droplet number density distribution at the late sta
which turns out to be independent of the details of the ini
nucleation process.

In the following we consider a semi-infinite system with
dry boundary wall. Extending the standard LSW theory
an infinite system, the distancez of the droplet center from
the wall will be taken as a second dynamic quantity in ad
tion to the droplet radiusa. Under the assumption of slow
diffusion, the concentration field surrounding a spheri
droplet becomes quasistationary so that the correspon
diffusion equation reduces to the Laplace equation. The c
centration along the droplet surfacecs is determined by the
Gibbs-Thomson relation

cs~a!5c0S 11L
2

aD , ~1!

wherec0 is the concentration above a planar condensate
L is a capillary length. In order to solve this diffusion pro
lem, we use an electrostatic analogy where the drople
replaced by a conducting sphere. Then the concentra
field, multiplied with the diffusion constantD, resembles the
electric field surrounding the sphere, also with Dirich
boundary conditions. The volume growth rateV̇ of the drop-
let ~i.e., the total flux into the droplet! corresponds to 4p
571063-651X/98/57~3!/3234~3!/$15.00
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times the charge of the conductor. Since this charge is gi
by the capacityC times the potential difference to infinity
we conclude that

V̇~a!54pDC~a,z!@c`2cs~a!#. ~2!

Together with Eq.~1! this shows thatacr52Lc0 /(c`2c0) is
the critical radius of the droplet. The normal derivative of t
concentration field at the boundary wall of the system v
ishes because there is no diffusion flux into the wall. T
Neumann boundary condition is implicitly fulfilled, if the
method of mirror charges is used with the wall taken as
reflection surface. In this way the growth properties of
droplet are described by the electrostatics of a capacitor c
sisting of two spheres with a spacing of 2z between their
centers. The capacity of one of these spheres is@15#

C~a,z!5a sinh~m!(
s51

`

~21!s11sinh~sm!21,

z/a[cosh~m!. ~3!

C converges to the bulk valueC5a for (z/a)→` and de-
creases monotonically for (z/a)→1 because of the reduce
diffusion flux screened by the wall. Also, the presence of
wall gives rise to an anisotropy of the diffusion-flux dens
along the surface of the growing droplet. Assuming that
hydrodynamic relaxation of the droplet shape is fast co
pared to the diffusional growth, the droplet remains spher
but has an effective drift perpendicular to the wall due to
above-mentioned screening effect. The drift is calculated
integration of the diffusion-flux density times the distan
from the droplet center of mass along the droplet surf
divided by its mass. This leads to

ż53 D„c`2cs~a!…
sinh~m!

a (
s51

`

~21!s11
sinh~sm!

sinh2@~s11!m#
,

~4!

where the expression for the diffusion-flux density has be
adopted from the result for the charge density of a capac
@15#. The z drift vanishes far away from the wall~as in an
infinite system! but increases when the distance to the wal
diminished.
3234 © 1998 The American Physical Society
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57 3235OSTWALD RIPENING IN A SEMI-INFINITE SYSTEM
A dry wall in contact with a supersaturated system tu
out to be stable if the droplets nucleated on the wall
spherical caps with contact anglesu.p/2 @16#. The growth
rate for the curvature radius of such a droplet can also
calculated using the electrostatic analogy. In this case
mirror image of the droplet is a symmetric bispherical le
The resultȧ is identical to that of a spherical droplet in th
bulk except for a constant prefactork(u) with k(u),1 for
u.p/2 @16,17#. Therefore the radii of supercritical nuclei o
the wall get surpassed by the critical radius, which is driv
by the faster growth of the droplets in the volume@16#. Con-
sequently, the droplets on the wall shrink so that the w
eventually becomes dry.

For the discussion of an ensemble of droplets in the b
the single droplet growth rates will be written in dimensio
less units following the procedure of Lifshitz and Slyoz
@12,13#. In terms of the dimensionless variablesu
5a/acr(t), g5z/a, t53ln@acr(t)/acr(0)#, C(g)5C(a,z)/a,
andZ(g)5a ż/(D@c`2cs(a)#), Eqs.~2! and ~4! become

du3

dt
5g~u21!C~g!2u3 ~5!

and

dg

dt
5

1

3
g~u222u23!@Z~g!2gC~g!# ~6!

with g[(6DLc0)/@dtacr
3 (t)#. The value ofg describes the

time dependence of the critical radius or the supersatura
respectively. Since in the thermodynamic limit the latter
dominated by the bulk, the value ofg can be adopted from
the LSW theory @12–14# as g527/4, which impliesacr
}t1/3.

A differential equation for the trajectoryg(u) for the late-
stage growth of droplets follows from the ratio of~5! and~6!,

dg

du
5

g~u21!@Z~g!2gC~g!#

g~u22u!C~g!2u4
[F~u,g!. ~7!

Numerical integration produces Figs. 1 and 2, where all
jectories run from the right to the left~i.e., u̇<0). The upper
line (g2150) of Fig. 1 represents the bulk behavior of th

FIG. 1. Trajectoriesg21(u).
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system discussed in the LSW theory@12–14#. A well-known
result of this theory is that the source atg2150,u53/2 leads
to a steady state droplet-size distributionw(t,u), which is
insensitive to the initial conditions. Foru,3/2 the function
w(t,u) has the form

w~t,u!5Ae2t
1

2v~u!
expF E

0

u du

v~u!G
5Ae2t

34e

25/3

u2 expF 21

122u/3G
~u13!7/3~3/22u!11/3 ~8!

with v(u)[du/dt and it vanishes foru.3/2.
In Fig. 1 one can distinguish three regions of differe

physical behavior. In the left corner below the dotted line
trajectories are shown because the corresponding drople
these trajectories would come out of the wall, which mak
no sense. The region above the dotted and below the da
line ~including the trajectories running into the wall atu
.1) is fed from the volume (g21→0) with infinite initial
values of the radiiu. Also, for radii u larger than 3/2 there
exist no droplets in the bulk. As a consequence no drop
do exist in the whole region which according to Fig. 2 co
responds to a layer of a thickness of about three critical r
at the wall. This means that in the late stage of the ripen
process a depletion layer will grow at a rate}t1/3. The
dashed line in Fig. 1 represents the boundary trajectory
longing to the fixed point (g2150,u53/2). Above this
boundary the flow along the trajectories can be character
by the source strength of the fixed point, which is implicit

FIG. 3. Droplet-number distribution in the semi-infinite syste

FIG. 2. Trajectoriesacr (u)/z. The thick long-dashed line mark
the droplet in contact with the wall (g51).



a-

eir

e

he

se
ry

e
tem
w
wall
o-

he
the
let

air-
p-
tical
ha-

on
to

is-
ors-

3236 57R. BURGHAUS
Eq. ~8!. Integration of the continuity equation along the tr
jectories leads to the droplet-number distribution,

w~t,u,z!5Ae2t
1

2vg1
~u!

3expF E
u

3/2

du8S ]F~u8,g!

]g U
u8,g~u8,g1!

2
]F~u8,g!

]g U
u8,g~u8,`!

D
1E

0

3/2

du8S 1

v`~u8!
2

1

vg1
~u8!D

1E
0

u

du8
1

vg1
~u8!G . ~9!

Here g(u,g1) are the trajectories parametrized by th
minima g1[g(u51) andvg1

(u) means the velocitydu/dt

on the trajectoryg1 at the radiusu. The expression~9! has
been evaluated numerically and the result forx(u,z)
[A21etw(t,u,z) is plotted in Fig. 3. Again the dashed lin
.

n

represents the boundary trajectory of the fixed point. T
curve in thex-u plane atacr /z50 displays the usual bulk
distribution ~8!. Generally, Fig. 3 shows a smooth decrea
in the droplet-number density from the bulk to the bounda
trajectory of the fixed point.

In conclusion we offer a qualitative interpretation of th
main results of the present paper. In a semi-infinite sys
with a dry boundary wall the droplets close to this wall gro
slower than the droplets that are far away because the
screens the diffusional flux into the droplet. In the therm
dynamic limit the droplets far away from the wall reduce t
supersaturation and drive the critical radius faster than
radius of a droplet close to the wall. A supercritical drop
that grows in the bulk approaches the wall in units ofg
because of its increasing radius, which leads to an imp
ment of its growth properties. The former supercritical dro
let gets surpassed by the critical radius, becomes subcri
and vanishes before it can reach the wall. This is the mec
nism that leads to the building up of the growing depleti
zone close to the wall. Of course it would be interesting
see this effect in an experiment.
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